Dedekind domains: Overrings and semi-prime elements
نویسندگان
چکیده
منابع مشابه
Minimal Prime Ideals of Ore Extensions over Commutative Dedekind Domains
Let R = D[x;σ, δ] be an Ore extension over a commutative Dedekind domain D, where σ is an automorphism on D. In the case δ = 0 Marubayashi et. al. already investigated the class of minimal prime ideals in term of their contraction on the coefficient ring D. In this note we extend this result to a general case δ 6= 0.
متن کاملElliptic Dedekind Domains Revisited
We give an affirmative answer to a 1976 question of M. Rosen: every abelian group is isomorphic to the class group of an elliptic Dedekind domain R. We can choose R to be the integral closure of a PID in a separable quadratic field extension. In particular, this yields new and – we feel – simpler proofs of theorems of L. Claborn and C.R. Leedham-Green. Luther Claborn received his PhD from U. Mi...
متن کاملElliptic Curves and Dedekind Domains
Some results are obtained on the group of rational points on elliptic curves over infinite algebraic number fields. A certain naturally defined class of Dedekind domains, elliptic Dedekind domains, are described and it is shown that every countable abelian group can be realized as the class group of an elliptic Dedekind domain. Introduction. Let E be an elliptic curve defined over a field K. Le...
متن کاملCyclic Homology of Dedekind Domains
The purpose of this paper is to calculate the cyclic homology of rings of integers of global fields. We accomplish this by explicitly computing the homology of the simple complex associated to Tsygan’s double complex. To accomplish this, we first compute the cyclic homology of cyclic algebras, i.e., algebras of the form A = R[t]/(P (t)), where P is a monic polynomial with coefficients in R. Mor...
متن کاملIntegral Domains Having Nonzero Elements with Infinitely Many Prime Divisors
In a factorial domain every nonzero element has only finitely many prime divisors. We study integral domains having nonzero elements with infinitely many prime divisors. Let D be an integral domain. It is well known that if D is a UFD then every nonzero element has only finitely many prime divisors (see e.g. [G]). This is also true if D is a Noetherian domain, or more generally, if D satisfies ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pacific Journal of Mathematics
سال: 1965
ISSN: 0030-8730,0030-8730
DOI: 10.2140/pjm.1965.15.799